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Spin-glass instability of a short-range random spherical ferromagnet
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In structurally disordered ferromagnets the weak random dipole-dipole exchange may transform the poly-
domain state into a spin-glass one. To some extent the properties of such phase in disordered isotropic
ferromagnet can be qualitatively described by the spherical model with the short-range ferromagnetic interac-
tion and weak frustrated infinite-range random-bond exchange. This model is shown to predict that spin-glass
phase substitutes the ferromagnetic one at the arbitrary small disorder strength and that its thermodynamics has
some similarity to that of polydomain state along with some significant distinctions. In particular, the longi-
tudinal susceptibility at small fields becomes frozen below transition point at a constant value depending on the
disorder strength, while the third-order nonlinear magnetic susceptibilitiy exhibits the temperature oscillations
in small field near the transition point. The relation of these predictions to the experimental data for some

disordered isotropic ferromagnets is discussed.
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I. INTRODUCTION

The spherical model with short-range exchange shares the
basic qualitative features with real isotropic ferromagnets. It
has phase transition only in space dimensions d>2 and its
coercive field is strictly zero. This is because it is equivalent
to the isotropic n-component model in the limit n—.! So
the scalar magnetization of short-range spherical model cor-
responds to the magnetization module of isotropic ferromag-
nets and this makes this model very useful for the studies of
qualitative features of their thermodynamics. Yet real ferro-
magnets have also the long-range dipole-dipole interaction.
Being a weak relativistic effect it nevertheless determines
crucially the nature of ferromagnetic transition which usually
results in the appearance of inhomogeneous polydomain
state. It shows up in the freezing of longitudinal magnetic
susceptibility at the value y=(4mk)~' below T, at fields H
<4mkM,, where « is the depolarizing coefficient along the
field direction and M is the spontaneous magnetization.>> It
is rather natural to suppose that when some nonmagnetic
disorder such as structural defects or nonmagnetic impurities
is present in a crystal the polydomain state may transform
into the spin-glass one.*

To describe the qualitative features of such spin-glass
state in random isotropic ferromagnets, we may turn to the
spherical model with weak long-range frustrated disorder
imitating the random dipole-dipole exchange in the structur-
ally disordered media. The influence of such (infinite-range)
disorder on the thermodynamics of the mean-field spherical
ferromagnet was studied in Ref. 5. In this model the spin-
glass phase instead of ferromagnetic one does appear when
disorder becomes sufficiently strong. Here we consider more
realistic short-range spherical model of ferromagnet with the
same infinite-range frustrated random exchange. We find that
contrary to the mean-field model in the short-range one the
spin-glass substitutes the ferromagnetic phase at arbitrary
weak random exchange. We also show that the magnetic
properties of this spin-glass phase in small magnetic fields
have some similarity to those of polydomain ferromagnetic
state along with some significant distinctions.
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II. MODEL

The Hamiltonian of the spherical model has the form
I .
H=- ESJS - HS.

Here S is N-component vector subjected to the constraint
S2=N, H is the external field, and Ji; is the matrix of ex-
change integrals.

Partition sum of the model can be represented as

a+ie d
Z=J 2—;6Xp[— NBF(V)], (1)

—2BF(N)=N=N"Trln G'(\) + N"'FHG(MH, (2)

G\ = (N~ BI)". (3)
B=1/T is the inverse temperature. The parameter a in the
integral over A can be arbitrary provided it obeys the condi-
tion a> BJ . With J.. being the largest eigenvalue of J.

Thus Egs. (1)—(3) are valid for any J with the spectrum lim-
ited from above. For the equilibrium thermodynamic poten-
tial F we have from Eq. (1) at N— oo

F= ngnF(k) =F[\o(D)]. 4)

Here )\o(j) is the value which provides the minimum of F(\).
It obeys the equation of state

dF (o) ~0 (5)
I

Solving Eq. (5) and substituting )\O(j) found into Eq. (3) we

get the equilibrium potential " and can then find all thermo-

dynamic variables of the system. In particular, we get for the

average local spins

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.78.174418

P. N. TIMONIN

(S)p=- N% = BG(\oH. (6)

When J is a random matrix we should average F over it. It

can be easily done if we assume \o(J) to be the self-
averaging quantity. Then while averaging Egs. (4) and (5) we

can just substitute \o(J) by its average value A=(\o(J)),.
Thus we get from Egs. (2) and (4)
—2pF == 2(F(\)),
=\- f de p(e)In(\ — &) + N™' BPH(G(N)) H,
(7)
where p(e) is the average spectral density of the matrix ,Bj,

ple) = L imm TG (e - i9));. (8)
7N 50

From Egs. (2), (3), and (5) we get the equation for \,

D(N)+0(\) =1, 9)
D(N) =N TGN, (10)
O(\) = N7 BH(G*(N)) H=N"(S)3),. (11)

The last equality in Eq. (11) follows from Eq. (6). It shows

that Q(\) is the Edwards-Anderson spin-glass order param-
eter.

Here we consider the Gaussian disorder for the exchange
integrals with the mean

<Ji,j> = j(ri - l'j)
and the deviation

AZ
<(Ji,,j)2>=_ Ji =i

N, i j(r,»—l‘j).

JT

We assume j(ri—rj) to describe the short-range ferromag-

netic interactions so its Fourier transform j(k) has a maxi-
mum at k=0 and near it

J(K) = J — AK>.
Then on a three-dimensional lattice the spectral density of
BI(K)
dk -
= | —=de-pJKk)],
)= [ s e = BT

would have the square-root behavior at the upper edge of the
spectrum which describes the most relevant long-range fer-
romagnetic fluctuations

pole) ~ ij—s.

So we choose
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2_)219[(,87)2—82]\/(/35)2—82. (12)
J

(B

pole) =

Here ¥ is the Heaviside step function. This py(e) correctly
behaves at the upper edge and makes further calculations

quite easy. The explicit form of J(k) appears to be irrelevant
for the homogeneous external field we consider below and
all thermodynamics is determined solely by py(e).

Now we can find (é(X)}, for such random ensemble
where the weak infinite-range random exchange fluctuations
of arbitrary sign coexist with nonrandom short-range ferro-

magnetic interactions. Expanding G(\) in the power series of
Ji" ; and averaging this expansion with the Gaussian distribu-
tion we find in the large N limit the following expression for

the Fourier transform of (G(\)) 7
G'(\ k) =N - BPA’D(N) - BI(K). (13)
Then for D(\) (10) we have the equation

PO(S)

. L [R- gAY
N—BA’D(\) —¢

(BI)?
K- AN - (877,
The solution to this equation is
2 2\ -1
PN = 2 KR, = (1 +4A—) .

J J

(B)?

D(X)=fd8

(14)

Equations (13) and (14) define G(\, k). From these equations
we can also find the Fourier transform of (G2(X\)) 7

Go(Rk) = — - G(R.K) = CANK)[1 - BAD (V).
2N
(15)
From Egs. (8), (10), and (14) we also get

1
p(e) = —1lim Im D(e - i9)
T 6—0

2
2 SLeBI - N B - e (16)

w(BJ)?

III. THERMODYNAMICS

Thus we have all that is needed to obtain the explicit
expressions for the average thermodynamic potential (7) and
the equation of state (9). Further we consider the homoge-
neous external field H;=H (i=1,...,N). It is convenient to

introduce the variable z, 0<<z<{1, instead of ):,
BJ

X=2—c(z"1+z). (17)

Then we have from Egs. (9)—(11), (13)—(15), and (17) the
equation which defines z,
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W22 (1+cz) = (1 —12)(1 = 22)(1 = ¢2)?,

h=H/T,, T,=\NJ/4+A% t=TIT,. (18)
From Egs. (7), (14), (16), and (17) we get the average po-

tential
zh? ( zz)
+t{Inz——].

—2FIT,=tlnt+z+7 '+ ——
§ SRR TR 2

(19)
It can be easily checked that Eq. (18) is equivalent to the

equation %:0 and that the solution of it provides the mini-
mum of potential in the interval 0 <<z<1. Other thermody-
namic parameters can be also expressed via z. Thus averag-
ing Eq. (6) over random exchange we get the average
magnetization

zh
(1-c2)*

while from Egs. (9), (10), and (17) we get for the equilibrium
value of the Edwards-Anderson order parameter

M=BHG(\k=0)= (20)

0=1-1z. (21)
Also from Eq. (19) we obtain the entropy
1 zz)
S=={1+Intz——], 22
2( nz-- (22)
and the heat capacity
dlnz
=—|1+(1-7 23
{ ( Z)dlnt:| (23)

Thus Egs. (20)-(23) supplied with the solution to Eq. (18)
for z=z(¢,h,c) give a full description of the thermodynamics
of the model. Here we should note that parameter ¢ defined
in Eq. (14) determines the relative strength of the short-range
ferromagnetic bonds. It varies in the interval 0=c=1 and
c=1 corresponds to the pure short-range ferromagnet while
at ¢=0 only random infinite-range glassy exchange is present
in the system. So at c=1 we have ordinary ferromagnetic
transition at t=1, h=0 with anomalies usual to the pure
spherical model. In this case Q=M?>. Yet at all ¢c<1 this
transition is destroyed and instead the transition into the
spin-glass phase takes place at =1, h=0.

Indeed, when h—0 then z—1/¢ for t>1 and z— 1 for
t<1.Soatall c<1 and h=0 M is zero; but spontaneous Q
appears at t<<1,Q=1-¢. This is in sharp contrast to the

model where instead of short-range J(k) the infinite-range
mean-field ferromagnetic interaction of the form j(k)

=5k!0,7 /N is introduced.” Then spin-glass transition substi-
tutes the ferromagnetic one only at ¢2<<1/5.

As the short-range spherical ferromagnet correctly repro-
duces the qualitative features of real isotropic ferromagnets,
we may suppose tentatively that the destruction of magnetic
order by the infinitesimal glassy long-range random-bond
disorder can also take place in real isotropic magnets with
structural imperfections. In such case the present model can

PHYSICAL REVIEW B 78, 174418 (2008)

2To/J

|
A3 1

FIG. 1. (Color online) The dependence of 7, on the relative
disorder strength A/J.

reveal the qualitative features accompanying this phenom-
enon in some amorphous ferromagnets, ferromagnetic alloys,
and even in the nominally pure ferromagnetic crystals.

The dependence of the spin-glass transition temperature

T, (18) on the relative strength (A/ J) of frustrated disorder is
shown in Fig. 1. Note that in the case of pure ferromagnet

c=1, Tg:O.Sj differs from the standard result for the ferro-

magnet with nearest-neighbor exchange 7,.=0.66J.° This is
the consequence of our choice of the spectral density (12)
which differs slightly from that of the nearest-neighbor fer-
romagnet.

At h=0 we have for all ¢

l(1 L) t>1 L t>1
2 212)° 217’
S= C=
1 1
—|=-+Inzt), t<1 -, <1
2 2
L t>1
oM ) (=)
. oh —1 <1
(1-¢)*

So the zero-field entropy and heat capacity do not depend
on ¢, while the magnetic susceptibility y is essentially de-
fined by it. Note that at ¢=0, h=0, our model coincides
with that considered in Ref. 5. Accordingly, in this case our
C and y coincide with those of Ref. 5.

Figure 2 shows the field dependence of magnetization at
various temperatures. Note the steep rise of M at low fields
below T,. Here the slope of M(h) in small fields is limited by
the value of zero-field susceptibility (1—c)™2, while in the
polydomain ferromagnet it is limited by y=(47x)~!. We can
easily find M(z,h) from Egs. (18) and (20) for small fields
h<t(1-c)3,

M=h[(1-¢)>+ 1= (r+ P+ bR,
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FIG. 2. (Color online) Field dependence of magnetization for
¢=0.9 at various temperatures =3 (solid line), 1 (dashed line), and
0.1 (dotted line).
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Figure 3 presents M(r) and x(¢) in small fields for ¢=0.9.
They are rather similar to those of pure ferromagnet under-
going the transition into polydomain state albeit with the
disorder-dependent saturation values.

Yet more spectacular anomalies are exhibited by the non-
linear magnetic susceptibilities of the model. They are
known to diverge at spin-glass transition in zero field in vari-
ous mean-field spin-glass models’ including the spherical
one.® In the last case these divergences result from the spe-
cific nonanalyticity of M(t,h,c) at r=1, h=0 in Eq. (24)
which also give rise to temperature and field oscillations of
nonlinear susceptibilities near the transition. Near transition
point at ¢ # 1 and for |71 < 1-c we get from Eq. (24) two first
nonlinear magnetic susceptibilities

_ M 2bh(37 +2bh%)
=T R T T (R

FIG. 3. (Color online) Temperature dependencies of (a) M and
(b) x for ¢=0.9 in small fields ~=5X 10~* (dotted lines), 3 X 10~
(dashed lines), and 10~ (solid lines).
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FIG. 4. (Color online) Nonlinear susceptibilities _(a) y,/b>?
and (b) x3/b* near the singular point 7=0, h=0.

_ oM 6b’F 25)
BT T P
They exhibit highly anisotropic behavior near the singular
point 7=0, h=0. In the polar coordinates defined as

\r@h
r=\7?+bh?, @=tan!| —

T

we have

6b”
X2=2b"?sin (2 +cos® @), x3;=—-cos* @. (26)
r

Thus at ¢=0 (h=0) x,=0 and y;=6b%"!, while at ¢
=m/2 (7=0) x,=2b"? sign(h) and x;=0. The behavior of x,
and 3 near the singular point 7=0, k=0 is shown in Fig. 4.
These complex anomalies result in specific field dependence
of x, and temperature oscillations of x; as seen in Fig. 5.

IV. DISCUSSION

The present results show that the properties of spin-glass
phase in random isotropic magnets differ essentially from
that of glassy phases in anisotropic magnets. Thus along with
the unusual behavior of nonlinear susceptibilities there is no
peak in temperature dependence of linear susceptibility
which appears to be similar to that of the heat capacity. Also
the replica symmetry breaking usual to anisotropic case is
absent in the present model of isotropic-spin glass. This im-

2000
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leb oF Xs/b

1000

-0.1 0.1

FIG. 5. (Color online) (a) Field dependencies of y,/b>? at 7
=0.01 (solid line), 0.03 (dashed line), and 0.05 (dotted line). (b)
Temperature dependencies of y3/b* at small fields 2=0 (solid line),
0.001 (dashed line), and 0.002 (dotted line).
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plies the absence of metastable states, nonergodicity, and dif-
ferences in field-cooled (FC) and zero-field-cooled (ZFC) pa-
rameters. It seems to be the reasonable conclusion as the
orientational degeneracy may prevent the formation of mac-
roscopic barriers between different phase-space regions.

Yet very slow relaxation inherent to glassy phases should
be also present in the isotropic case. It may somewhat hinder
the agreement between the present static results and the ex-
perimental data in which the significant frequency dispersion
can smear the static anomalies. We should also point out that
the ideal magnetic isotropy cannot be achieved in real mag-
nets due to defects and spin-lattice couplings. Small aniso-
tropy may result in slight decrease in linear susceptibility
below T, and less pronounced oscillations of nonlinear ones.
We can also expect that small anisotropy induces some small
differences in FC and ZFC parameters.

Yet there is a variety of real magnets which exhibit the
properties quite similar to those predicted by the present
model. The behavior of nonlinear susceptibilities similar to
that of Fig. 5 is observed in isotropic ferromagnet
Nd, 75Bag ,sMnO; (Ref. 9) and in the polycrystalline samples
of RuSr,GdCu,04.'° In the toroidal polycrystalline samples
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of LageBaguMnO; (Ref. 11) with demagnetization factor
x=~0 the plateau in y(7) same as in Fig. 3(b) is found mani-
festing the transition into the glass state. There are many
other examples of such steplike behavior of y(7) in disor-
dered isotropic magnets (see, for example, Refs. 12 and 13).
But it is often impossible to check the relation y=(47k)™!
below T, to distinguish between the polydomain and the
spin-glass states as some experimental papers lack the values
of « calculated from the sample shape. It is quite possible
that such check will show that many allegedly polydomain
ferromagnets are actually the spin glasses.

Yet now it is not clear if the present result on the spin-
glass instability of spherical magnet does apply to the real
dipolar Heisenberg magnets which may have some threshold
disorder strength to become the spin glasses. To resolve this
issue further theoretical studies of the role of random dipole-
dipole interaction in isotropic ferromagnets are needed.
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